CDMA Capacity Evolution – Mobile Receive Diversity

Adam Gould
CTO, CDMA
Nokia Mobile Phones
01 Oct 2002
Agenda

- Terminal cost business case
- Receive Diversity
 - Implementation
 - Antennas
 - Other issues
- Adaptive Antennas
- Advanced Receiver, Single Antenna
- Multiple BS antennas
- Conclusion
Acceptable Terminal Cost Addition

- Voice 50 mErl
- Data 0.5 MB/hr
- Data 5 MB/hr

Max terminal cost

~$2 max

subscribers/km²
Rx Diversity - Terminal Implementation

- Extra Hardware
 - 2nd antenna, Rx only
 - 2nd Receive chain
 - 2nd A/D converter
 - 2D Rake

- New Algorithms
 - 2nd AGC
 - New multi-antenna searcher
 - New finger assignment. More fingers?
 - New multi-antenna combiner

- Added cost
 - Additional ~10% material cost
 - ~3-4x greater than acceptable terminal cost adder

- Other
 - Added PCB area: ~10%
 - RF Rx on current increase: 70-80%
Rx Diversity Antenna Issues

- Rx Diversity Antenna should have low correlation to main antenna
 - **Polarization Diversity** – 2 antennas have different polarization
 - **Pattern Diversity** – 2 antennas have different radiation patterns
 - **Separation Diversity** – significant (> ½ λ) separation between antennas

- Low coupling needed to have low correlation
- Rx Diversity Antenna performance must be comparable to main antenna
- Must prevent interference/coupling with GPS and/or BT antenna
- SAR not an issue for RX Diversity Antenna – not used for transmit
 - Best position is location of main antenna -> May create coupling
Rx Diversity - PCS vs. Cell Band Antennas

- Wavelength of PCS (~15 cm) smaller than Cell band (~30 cm)
 - Easier to obtain polarization, separation or pattern diversity in PCS only

- Cell band antenna polarization aligned along long dimension of phone
 - Rx Diversity Antenna would have same polarization

- PCS only antenna could be internal and quite small
 - Single band only, only 60 MHz
 - Size possibly 10mm x 20mm x 4 mm, about half area and quarter volume of main antenna
 - Placement still an issue, since optimal position is in same location as main antenna

- For Dual Band (Cell/PCS) operation, RX Diversity Antenna would need to be same size as main antenna.
 - Causes problems with mechanical concept flexibility
Rx Diversity – Other Issues

• Many antennas already – Cell/PCS, Bluetooth, GPS
 • Additional antennas limit mechanical concept possibilities

• Placement of Rx Diversity Antenna more challenging for voice
 • Place away from hand -> near main antenna
 • Data products have different usage models than voice, antennas may be placed differently

• Disconnect between CDMA and GSM
 • Any global company will have harder time re-using global mechanical concepts -> more limited terminal choice in CDMA
 • More cost disadvantage to CDMA terminals compared to GSM
Adaptive Antennas

• Multi-antenna techniques for a single receiver phone
 • Switching, steering, beamforming, Phased combining, etc.

• Technology maturity needs to improve
 • Physical / Form Factor – antennas are very large
 • Implementation issues
 • Algorithms still in development phase
 • May cause intermodulation problems
 • Cellular system issues to be resolved as well
 • Soft handoff, mobility, power control..

• Potentially 1 – 3 dB gain

• Cost Range: < $2
Advanced receiver with single antenna

• Advanced receiver techniques for improving performance

⇒ Key Drivers: low cost, improved performance and reliability key
⇒ Up to 4 dB gain: an incremental, fast, and evolutionary step
 ⇒ improved RF performance
 ⇒ Bigger/better whip antenna
 ⇒ Interference cancellation (e.g. Pilot)
 ⇒ Chip equalizer
 ⇒ As much gain potential as Rx Diversity
⇒ Cost range: < $1
Multiple Antennas at the BS

- Multiple Antennas deployed at the BS
 - Multiple Transmitters at the BS; two, four, etc.
 - Extra PA cost for 2x2, new technologies enabling 4x2 and larger arrays, and eventually lowering the BS upgrade cost
 - New baseband algorithms for MS needed; space-time coding, etc
 - Similar MS hardware as Rx Diversity
 - Requires 3GPP2 standardization
 - Gain: double the data throughput around 2007/8
Cost Comparisons

- Advanced Receiver antennas
- Adaptive antennas
- Dual-receiver antennas
- BS multiple antennas

[Chart showing cost comparisons]
Key Messages

• Any dual-receiver solution is a significant cost for handset and therefore discontinuity in business model and needs to be studied carefully

• Initial study shows that dual-receiver cost is justified only for very high speed data segment but not for voice capacity improvement

• Multi-antenna approaches severely limit mechanical concept design

• Adaptive antennas are not mature enough for deployment