Standards for MEID and Expanded UIMID (E-UIMID)

July, 2011

Version 2.1

Contact
David Crowe
meid@cdg.org
Background

Changes in this revision (v2.1) are shown in green.

- Mobile devices and R-UIMs (Removable User Identity Modules) must be identified by a unique code for a variety of reasons.

- Applications for new assignments of the original 32 bit identifiers known as ESN and UIMID have not been accepted since June 2010. Previously received yet unfulfilled requests are still being processed.

- Replacement identifiers are standardized and available –
 - MEID: Mobile Equipment Identity
 - EUIMID: Expanded UIM Identity

- This presentation describes the standards to support the migration to MEID and EUIMID.

- See http://cdg.org/meid for other resources, including descriptions of the ESN, UIMID, MEID and EUIMID numbering resources.
Standards Summary

A summary of the major standards that have been or will be modified to support MEID or EUIMID...
Key Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.S0008~9</td>
<td>Base Station Interfaces for HRPD/EVDO</td>
</tr>
<tr>
<td>A.S0011~17</td>
<td>Base Station/MSC Interface (IOS)</td>
</tr>
<tr>
<td>C.S0001~6-E</td>
<td>CDMA2000 radio interface, allowing StatusRequest for all IDs.</td>
</tr>
<tr>
<td>C.S0016-C v2.0</td>
<td>Over-the-Air Service Provisioning (OTASP)</td>
</tr>
<tr>
<td>C.S0023-C v2.0</td>
<td>R-UIM with SF_EUIMID Support (storage of SF_EUIMID, storage of MEID from mobile, UsgInd bit 2)</td>
</tr>
<tr>
<td>C.S0024-A</td>
<td>EVDO with MEID Support (Hardware ID set to MEID instead of ESN)</td>
</tr>
<tr>
<td>C.S0066</td>
<td>OTA Support Modifications for MEID (new Extended Protocol Capability Response message containing MEID)</td>
</tr>
<tr>
<td>C.S0072-0</td>
<td>Air Interface Modifications for MEID and BS-Assigned PLCM (SCM bit 4 = ‘1’, new PLCM assignment types, transmission of MEID in Status Request and Extended Protocol Capability Response messages)</td>
</tr>
<tr>
<td>C.S0073</td>
<td>Test specification for MEID-equipped mobiles. Revision A also includes EUIMID test cases. Revision B tests access to new Status Request types.</td>
</tr>
<tr>
<td>X.S0008-0 v3.0</td>
<td>ANSI-41 Modifications for MEID. Defines the display formats and check digit calculations for MEID and SF_EUIMID as well as the new CheckMEID and StatusRequest messages. Allows many existing messages to carry MEID.</td>
</tr>
<tr>
<td>X.S0011-005-D</td>
<td>Accounting records from RAN to PDSN to AAA may contain MEID.</td>
</tr>
<tr>
<td>X.S0033</td>
<td>Modified OTASP network protocol including MEID at ANSI-41 level.</td>
</tr>
</tbody>
</table>

3GPP2 specifications are freely available at: http://www.3gpp2.org/Public_html/specs/index.cfm. Versions more recent than those shown here can be used.
R-UIM and CSIM Standards

- The R-UIM and CSIM are known informally as “smart cards” and are used in most cdma2000 networks outside the Americas.
- R-UIM is a card designed solely for cdma2000.
- CSIM is an application on a UICC card that can also host other protocols such as GSM and W-CDMA.
Revision C (published 06/2006) provides:
- SF_EUIMID storage
- Service n8 (SF_EUIMID)
- Service n9 (storage of MEID)

Version 2.0 (published 10/2008) clarifies:
- Ordering of ICCID into SHA-1 algorithm to calculate pUIMID.
- Transmission of all 20 digits from ICCID EF outside R-UIM.
- Ordering of digits in SF_EUIMID field.
- Number of bits in ESN/UIMID (text currently implies they can be 32 or 56 bits, not just 32).
C.S0065 (TIA-1080) CSIM Specification

- CSIM is an application running on the UICC (Universal Integrated Circuit Card) platform.
- C.S0065-0 v1.0 has same changes as C.S0023-C v1.0 for this card type.
- C.S0065-0 v2.0 (published 07/2008) has the same changes as C.S0023-C v2.0.
- The standard was published with one editorial error. The example of a pUIMID calculated from LF_EUIMID is not correct. A corrected version was published in December, 2008.
1X Radio Interface

- cdma2000 ‘1X’ radio interface provides voice services, validation and authentication services and medium speed data.
- The **EVDO (HRPD)** radio interface is discussed under Packet Data.
Revision 0 of this specification (published 08/2005) provides:

- Use of previously unused SCM bit 4 to indicate MEID support in device.
- New PLCM derivation types including BS-assigned at call setup and handoff.
- Access to MEID (or SF_EUIMID) via Status Request.
- Transmission of MEID vs. SF_EUIMID is controlled by the UsgInd setting in the R-UIM.
- Compatibility with older air interface protocol versions (as P_REV is unaffected by this new capability).

Largely superseded by Revision E of the air interface.
C.S000x-D (TIA-2000-D) – MEID
Replaces ESN

- It is important to note that this suite of standards has not been commercialized and there are no plans to do so.
- This standard allowed MEID in LAC addressing, replacing or supplementing ESN.
C.S000x-E – 1X Advanced

- A revision of the CDMA2000 air interface.
- Published September, 2009.
- This version is more modular than Release D, new functionality is designed to be supported independently:
 - Many capabilities (such as new StatusRequest types) can be accessed without moving to a higher PREV.
- This specification supports StatusRequest messages to provide access to the following identifiers:
 - EUIMID (SF_EUIMID or LF_EUIMID).
 - MEID_ME (the MEID of the ME even when UsgInd bit 2 indicates that SF_EUIMID displaces MEID in signaling).
 - ESN_ME (the ESN of the ME even when UsgInd bit 1 indicates that UIMID displaces ESN in signaling).
IOS – MSC/BSC Interface

- IOS provides a number of interfaces centered on the BSC and BS.
- For MEID/EUIMID purposes, it is the BSC–MSC interface that is most relevant.
- A.S0011 through A.S0017 support 1X services and may need to be updated to support C.S0072 (e.g. hard handoff).
- A.S0008 and A.S0009 support HRPD/EVDO services and may need to be updated to support MEID (e.g. as Hardware ID).
Revision B v1.0 of this specification (IOS 4.3.1) supported new PLCM assignment types.

Revision C v1.0 of this specification (IOS 5.0) supported MEID in Release D systems.

Revision C v2.0 of this specification (IOS 5.0.1) supported MEID in systems supporting C.S0072 (TIA-1082).

Release D of the air interface is not implemented, and the major application for new PLCM assignment types is MEID, therefore IOS 5.0.1 is the most likely requirement.

Transmission of MEID, EUIMID and other identifiers in Status Request messages is transparent to these specifications.
PDN – Packet Data Network

- Packet Data Network in cdma2000 systems includes 1X base stations, EVDO (HRPD) RAN, PDSN and AAA
A high speed data standard within the cdma2000 family.

Most EVDO (HRPD) devices also operate in 1X mode, and thus most impacts from MEID and EUIMID are restricted to that mode.

It is important to recognize that the EVDO “Hardware ID” parameter is now either:

- ESN, or
- MEID

This parameter is never UIMID or EUIMID:

- NAI (user name) is the accessible unique card identifier.

C.S0024-A v3.0 clarified that Hardware ID is never an R-UIM identifier (September, 2009).

Rev. 0 systems may need to be updated to accept MEID as Hardware ID.
MEID is added as a possible element in RADIUS accounting messages.

MEID is not as critical as NAI and MIN/IMSI in billing for packet data, but may be useful.

The parameters provided will vary depending on whether a session is a 1X or EVDO data mode, especially on R-UIM systems:

- EVDO systems provide MEID or ESN, not both (e.g. pESN is not provided).
- 1X systems may provide UIMID instead of ESN and SF_EUIMID instead of MEID (depending on network, MS and R-UIM configuration).
- 1X systems will usually provide a pseudo-identifier along with MEID or SF_EUIMID.
OTASP - Over-the-Air Service Provisioning

- OTASP and other provisioning systems are affected when they currently use ESN or UIMID as unique identifier.
- Likely *not* affected when MIN/IMSI is pre-provisioned.
- SF_EUIMID is transmitted instead of MEID if card’s UsgInd bit 2 is ‘1’.
- OTAF cannot determine reliably if mobile is MEID capable (SCM bit is not sent to OTAF).
- Biggest problem is the provisioning of an EUIMID card in an ESN mobile – no unique provisioning identifier unless cards are pre-provisioned.
C.S0016 (TIA-683) – OTASP

- Revision C (published November, 2004) provided:
 - Ability to obtain MEID (or SF_EUIMID with UsgInd bit 2=1)
- Revision C Version 2.0 (published October, 2008) provides:
 - Access to both MEID, EUIMID and ICCID during OTASP session.
 - Resolution of band class/MEID interaction.
 - When ICCID is transmitted, all 20 digits should be transmitted (not just 18, as originally proposed).
C.S0066 (TIA-158) – OTASP for MEID

- This specification was designed to provide MEID support to previously published versions of C.S0016.
- Revision 0 (September, 2004) provides:
 - Access to MEID (or SF_EUIMID) during OTASP session.
- Version 2.0 (July, 2008) provides:
 - Access to EUIMID and ICCID as well as MEID during OTASP session.
 - Resolution of band class problem.
 - When LF_EUIMID is transmitted it will be the 20 digit contents of EF(ICCID) not just the (usually) 18 digit ICCID.
X.S0033 (TIA-1074) – OTASP in ANSI-41

- Revision 0 of this standard (published in November, 2005 and revised March, 2006) provides:
 - Inclusion of MEID in ANSI-41 messages supporting OTASP, providing an alternative to transmitting MEID in the OTASP signaling layer.
 - This is less desirable than implementation of C.S0016-C or C.S0066 because more widespread network changes are required.
Testing

- Testing of MEID and EUIMID capabilities is important when initially migrating, and ongoing when accepting new phones, infrastructure upgrades and so on.
Revision 0 of this specification (October, 2005) provided:
- An extensive sequence of test cases for MEID-equipped mobiles.

Revision A (April, 2008) provides:
- Test cases for MEID-equipped mobile with R-UIM with either SF_EUIMID or LF_EUIMID.
- A note indicating that testing R-UIMs equipped with EUIMID in ESN-based mobiles should use C.S0043 and C.S0044, such tests are outside the scope of this specification.

Revision B (August, 2009) defines tests for:
- Access to all identifiers (MEID, SF_EUIMID, LF_EUIMID etc.) via OTASP.
- Access to all identifiers via Status Request (via Release E of the air interface).
Core Network

- Core Network modifications are, perhaps surprisingly, not required to support MEID.
- Some HLRs and VLRs are known to (unnecessarily) require ESN uniqueness. If present, this restriction will need to be removed.
- Some systems have not allowed decimal MEID codes (e.g. RR=99 or other IMEI ranges). This restriction also needs to be removed.
- Other network elements, such as back office systems for provisioning and billing, may have similar restrictions. This is a characteristic of individual equipment, not based on standards.
X.S0008 (TIA-928) – MEID in ANSI-41

- Revision 0 of this specification (published 07/2004) provided:
 - Transmission of MEID from MSC to VLR to EIR.
 - Optional inclusion of MEID in most ANSI-41 messages.
 - MEID check digit calculations.
 - 14 digit (‘hex’) and 18 digit (‘decimal’) display formats.

- Addendum 1 of Revision 0 (published 11/2005) provided:
 - MEID validation at the HLR (verifying that the MEID being used by a subscriber does not change). This capability may not be applicable to systems utilizing R-UIM.
Billing

- Some billing protocols (e.g. CIBER) allow only one hardware identifier (ESN or pESN or UIMID or pUIMID or MEID or SF_EUIMID) to be transmitted.
- Some billing systems perform MIN/ESN validation (checking that the subscriber record identified by MIN is associated with received ESN).
- This validation is not applicable when MEID is transmitted.
- There is no risk of fraud and only a small risk of billing errors if validation is removed.
- Carriers can continue to include 32-bit identifier (e.g. pUIMID) or not validate when MEID is received.
 - Inclusion of the 32-bit identifier is probably safest.
 - Billing systems should accept either 32 or 56 bit formats.
Resources

A glossary. Also see http://cdg.org/MEID
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP2</td>
<td>Third Generation Partnership Project</td>
<td>PLCM</td>
<td>Public Long Code Mask</td>
</tr>
<tr>
<td>ESN</td>
<td>Electronic Serial Number</td>
<td>R-UIM</td>
<td>Removable UIM</td>
</tr>
<tr>
<td>EUIMID</td>
<td>Expanded UIMID</td>
<td>SCM</td>
<td>Station Class Mark</td>
</tr>
<tr>
<td>IMEI</td>
<td>International Mobile Equipment Identity</td>
<td>TIA</td>
<td>Telecommunications Industry Association</td>
</tr>
<tr>
<td>IMSI</td>
<td>International Mobile Subscription Identity</td>
<td>UIM</td>
<td>User Identification Module</td>
</tr>
<tr>
<td>IOS</td>
<td>Inter-Operability Standard (‘A’ Interface)</td>
<td>UIMID</td>
<td>R-UIM Identifier</td>
</tr>
<tr>
<td>MEID</td>
<td>Mobile Equipment Identifier</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thank You